

Differentiable Search of Evolutionary Trees

<u>Ramith Hettiarachchi</u>¹, Avi Swartz², Sergey Ovchinnikov³

¹FAS Division of Science, Harvard University, ²Molecular and Cellular Biology Program, University of Washington ³JHDSF Program, Harvard University TAS BOOM OF THE SECOND OF THE

ICAL International Conference On Machine Learning

I'm looking for PhD opportunities for Fall 2024

TL;DR: We introduce a differentiable approach to search for phylogenetic trees. We optimize the tree and ancestral sequences to reduce the total evolutionary steps (parsimony cost).

1 Introduction

- Evolutionary trees are used in various fields of science.
- Inferring the most parsimonious tree given leaves is a NP-hard problem.
- Due to this complexity, existing work consider heuristic search techniques.

• How can we prevent cycles in our search space ? constraint to DAG space!

3 Results

• We compare the converged tree and ancestor solutions to the simulated solutions and the optimal solutions of tasks 1-3.

Table 1. Convergence analysis on the 3 tasks									
Tree Complexity			Task 1	Task 2 (find seq given tree)			Task 3 (find both tree and seqs)		
N	Simulated solution	Mean optimal solution	Mean error	Mean solution	Mean error	Mean error as a % w.r.t optimal solution	Mean solution	Mean error	Mean error as a % w.r.t optimal solution
4	300	277.2	0.0	277.2	0.0 ± 0.0	0.000%	277.2	0.0 ± 0.0	0.000%
8	700	653.1	0.0	653.1	0.0 ± 0.0	0.000%	653.1	0.0 ± 0.0	0.000%
16	1500	1407.6	0.0	1407.6	0.0 ± 0.0	0.000%	1407.7	0.1 ± 0.3	0.007%
32	3100	2915.4	0.0	2915.4	0.0 ± 0.0	0.000%	2936.3	20.9 ± 7.4	0.717%
64	6300	5929.3	0.0	5929.3	0.0 ± 0.0	0.000%	6188.6	259.3 ± 27.4	4.373%
128	12700	11971.1	0.0	11971.3	0.2 ± 0.4	0.001%	12885.5	914.4 ± 99.6	7.638%

"Nevada" constrainted parameter matrix

1) Obtain a probability

distribution over the

parents of each node.

• Making the sequence ($\phi_{ m seq}$) space differentiable

Discrete nature of the categorical choices in the sequence representation is relaxed similarly by obtaining a probability distribution over the character space at each position.

 $\hat{\phi}_{seq_{ijk}} = rac{e^{\phi_{seq_{ijk}}/ au_2}}{\sum_{m=1}^{c} e^{\phi_{seq_{ijm}/ au_2}}}$

• Therefore, we have the following two representations,

 $A_{ij} = rac{e^{\sigma_{I_{ij}}/\tau_1}}{\sum_{k=1}^{N-1} e^{ heta_{T_{ik}}/ au_1}}$

2) Enforce bifurcating trees by **regularizing** the loss.

Difference % (Δ) w.r.t simulated solution

Difference % (Δ) w.r.t global optimum

• Example experiment : (32 leaves, 256 length sequence) (left : sequences, right : tree topology. optimal solution cost = 2913)

Differentiable soft parsimony score calculation

Cost

• Bi-level optimization to find ancestors and tree

Conclusions & Future Work

• New approach for generating evolutionary trees by traversing a soft tree and

sequence space.

- Even though task 2 can be solved with dynamic programming, it assumes site-wise independence. Yet, our method allows for lifting this restriction.
- This will allow the integration of distance calculations that model higher-order dependence, such as potts and protein language models.

Check out Our Github Page

References

- [1] Nicholson, V. A. Matrices with permanent equal to one. Linear Algebra and Its Applications, 12(2), 1975.
- [2] Felsenstein, J. Inferring phylogenies, volume 2. Sinauer associates Sunderland, MA, 2004.
- [3] Sankoff, D. Minimal Mutation Trees of Sequences. SIAM Journal on Applied Mathematics, 28(1), 1975.
- [4] Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S., Llinares-Lopez, F., Pedregosa, F., and Vert, J.-P. Efficient and modular implicit differentiation, 2021.

