Differentiable Search of Evolutionary Trees

Ramith Hettiarachchi ${ }^{1 \oplus}$, Avi Swartz ${ }^{2}$, Sergey Ovchinnikov ${ }^{3}$

${ }^{1}$ FAS Division of Science, Harvard University, ${ }^{2}$ Molecular and Cellular Biology Program, University of Washington ${ }^{3}$ JHDSF Program, Harvard University

TL;DR: We introduce a differentiable approach to search for phylogenetic trees. We optimize the tree and ancestral sequences to reduce the total evolutionary steps (parsimony cost).

Introduction

- Evolutionary trees are used in various fields of science.
- Inferring the most parsimonious tree given leaves is a NP-hard problem.
- Due to this complexity, existing work consider heuristic search techniques.

Task1 (Learn tree)
पान पोराण पोण

Task2 (Learn ancestors)

(small parsimony problem)

Number of bifurcating trees vs leaves (N)

2 Methodology

Task3 (Learn both)

Results

- We compare the converged tree and ancestor solutions to the simulated solutions and the optimal solutions of tasks 1-3.

Tree Complexity			Task 1 Mean error	Task 2 (find seq given tree)			Task 3 (find both tree and seqs)		
N	Simulated solution	Mean optimal solution		Mean solution	Mean error	Mean error as a \% w.r.t optimal solution	Mean solution	Mean error	Mean error as a \% w.r.t optimal solution
4	300	277.2	0.0	277.2	0.0 ± 0.0	0.000\%	277.2	0.0 ± 0.0	0.000\%
8	700	653.1	0.0	653.1	0.0 ± 0.0	0.000\%	653.1	0.0 ± 0.0	0.000\%
16	1500	1407.6	0.0	1407.6	0.0 ± 0.0	0.000\%	1407.7	0.1 ± 0.3	0.007\%
32	3100	2915.4	0.0	2915.4	0.0 ± 0.0	0.000\%	2936.3	20.9 ± 7.4	0.717\%
64	6300	5929.3	0.0	5929.3	0.0 ± 0.0	0.000\%	6188.6	259.3 ± 27.4	4.373\%
128	12700	11971.1	0.0	11971.3	0.2 ± 0.4	0.001\%	12885.5	914.4 ± 99.6	7.638\%

- Example experiment : (32 leaves, 256 length sequence)
(left: sequences, right: tree topology. optimal solution cost = 2913)

- Making the sequence ($\phi_{\text {seq }}$) space differentiable

Discrete nature of the categorical choices in the sequence representation is relaxed
similarly by obtaining a probability distribution over the character space at each position

$$
\hat{\phi}_{s e q_{i j k}}=\frac{e^{\phi_{s e q_{i j k}} / \tau_{2}}}{\sum_{m=1}^{c} e^{\phi_{s e_{i j} m_{m} / \tau_{2}}}}
$$

How can we prevent cycles in our search space? constraint to DAG space!
 \downarrow 1) Obtain a probability parents of each node. $A_{i j}=\frac{e^{\theta_{T_{i j}} / \tau_{1}}}{\sum_{k=1}^{N-1} e^{\theta_{T_{k}} / \tau_{1}}}$) Enforce bifurcating trees by regularizing the loss. $L_{b}=\sum_{j=1}^{N-1} a b s\left(\left(\sum_{i=1}^{2 N-2} A_{i j}\right)-2\right)$

$$
\prod_{\pi}^{\infty}
$$

- Differentiable soft parsimony score calculation

$$
\left.\mathcal{L}_{\text {cost }}\left(\theta_{T}, \phi_{\text {seq }}, \tau_{1}, \tau_{2}\right)=\frac{1}{2} \sum_{i=1}^{2 N-1} \sum_{j=1}^{l} \sum_{k=1}^{\left|A_{1}\right|} \right\rvert\, S_{p_{k}}-A \times S_{p_{k} l_{i j}}
$$

- Bi-level optimization to find ancestors and tree

4. Conclusions \& Future Work

- New approach for generating evolutionary trees by traversing a soft tree and sequence space.
- Even though task 2 can be solved with dynamic programming, it assumes site-wise independence. Yet, our method allows for lifting this restriction.
- This will allow the integration of distance calculations that model higher-order dependence, such as potts and protein language models.

